RHODIUM(II)- AND COPPER(I)-CATALYZED INTRAMOLECULAR CARBON-HYDROGEN BOND INSERTIONS WITH METAL CARBENOIDS DERIVED FROM DIAZO KETONES

Paul MÜLLER^{1,*} and Esther MAÎTREJEAN²

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; e-mail: ¹ paul.muller@chiorg.unige.ch, ² esther.maitrejean@chiorg.unige.ch

> Received June 29, 1999 Accepted September 16, 1999

Dedicated to Professor Otto Exner on the occasion of his 75th birthday.

The decomposition of diazo ketones in the presence of Rh(II) and Cu(I) catalysts affords products of C-H bond insertion in high yields. The effect of structural variation on intramolecular and transannular C-H insertions of diazo ketones has been investigated. The enantioselectivity of the insertion was examined with 15 chiral catalysts of different structural types. It was low in all cases. The poor enantioselectivity of the insertion of diazo ketones in comparison to that obtained in insertions of diazo esters and diazo amides is attributed to two factors: The oxocarbenes derived from diazo esters and diazo amides are stabilized by resonance of the carbonyl group with the heteroatom. Furthermore, the conformational constraints which must be overcome in order to reach the transition state for intramolecular insertion are lower in the case of carbenes derived from diazo ketones than in those from diazo esters and amides owing to the higher rotational barriers of amides and esters in comparison with that of ketones. This results in an earlier, and therefore less selective transition state for insertion of diazo ketones.

Key words: Carbenoids; Carbenes; Diazo compounds; Enantioselective catalysis; Insertions; Rhodium; Copper; Chelates.

The reaction of diazo compounds with transition metal complexes derived from Cu(I), Rh(II), Ru(II), *etc.* affords metal carbenoids, capable of transferring their carbene moiety to suitable acceptors¹. The selectivity of the metal carbenoid depends upon the substituent of the carbene, the nature of the metal and upon that of its ligands². If the ligands are chiral, enantioselective carbene transfer may occur. The development of chiral metal complexes serving as catalysts for diazo decomposition and, hence, enantioselective carbenoid reactions has made spectacular progress over the last ten years. Numerous catalyst–carbene combinations are known, and almost fully enantioselective carbene transfer reactions have been realized³. Diazo esters and diazo amides are the most suitable precursors for asymmetric carbene transfer. In contrast, the enantioselectivity of diazo ketones in typical carbenoid reactions is usually low. Except for a few isolated examples of intramolecular cyclopropanations⁴ and C-H insertions⁵, enantioselective carbenoid reactions of diazo ketones have by far not met the spectacular success encountered with diazo esters and diazo amides, although diazo ketones have found numerous successful applications in racemic synthesis⁶. Some years ago we have reported enantioselective intramolecular C-H insertions of diazoacetate esters in the presence of chiral Rh(II) carboxamidate catalysts, such as $[Rh_2\{(2S)-mepy\}_4]$, which proceeded with enantioselectivities of up to 95% and better⁷ while insertion reactions of structurally analogous diazo ketones were almost totally unselective. A similar lack of enantiocontrol in carbenoid reactions of diazo ketones has been found by other authors³, but no satisfactory explanation has been proposed, nor have catalysts been designed to overcome this deficiency.

The present investigation deals with intramolecular carbenoid insertion of diazo ketones in the presence of chiral Rh(II) and Cu(I) catalysts. It was expected that, by varying the structures of the diazo ketones, and by screening a series of structurally different catalysts, some leads would emerge, which would contribute to the rational design of more selective chiral Rh(II) catalysts. Diazo ketones with variable structures were synthesized such as to allow the investigation of transannular insertions with diazocycloalkanones, intramolecular and transannular insertions of diazocycloalkenonens, and intramolecular insertions of diazo ketoesters having alcohol moieties with different steric hindrance.

EXPERIMENTAL

General. See ref.8

Catalysts. $[Rh_2(OAc)_4]$ (1a) and $[Cu(acac)_2]$ (5a) were purchased from Fluka or from Pressure Chemical Co. Pittsburgh. The other Rh(II) catalysts were synthesized by ligand exchange from $[Rh_2(OAc)_4]$: $[Rh_2\{(S)-meba\}_4]$ (1b): ref.⁹; $[Rh_2\{(-)-mpmt\}_4]$ (1c): ref.¹⁰; $[Rh_2\{(S)-(-)-ptpa\}_4]$ (1e): ref.¹¹; $[Rh_2\{(2S)-mepy\}_4]$ (2a): ref.¹²; $[Rh_2\{(4S)-mppim\}_4]$ (2b): ref.¹³; $[Rh_2((S)-tbsp\}_4]$ (3a): ref.¹⁴; $[Rh_2\{(R)-(-)-bnp\}_4]$ (4a): ref.¹⁵; $[Rh_2\{(R)-(-)Me_2bnp\}_4]$ (4b): ref.¹⁶; [Cu-semicorrin] (5b): ref.¹⁷; [Cu-iPr-pybox] (5c): ref.¹⁸; $[Rh_2\{(+)-dmanth\}_4]$ (1d) and $[Rh_2\{(S)-(-)-ptleu\}_4]$ (1f): ref.¹⁹ and the prolinate catalysts 3b-3d were provided by M. A. McKervey. Abbreviations of ligands: acac, acetylacetonate; bnhp, bisnaphthol phosphate; dmanth, octahydro-1:4,5:8-dimethano-9-anthroate; meba, 2-methoxyethylbenzoate; Me_2bnhp, 3,3'-dimethylbisnaphthol phosphate; mepy, methyl 2-pyrrolidonecarboxylate; mpmt, 2-carboxymethylbenzoate; mppim, methyl *N*-(3-phenylpropanoyl)imidazolidinone-4-carboxylate; naph-pro, *N*-naphthoyl prolinate; ptle, *N*-phtaloyl *tert*-leucinate; ptpa,

N-phthaloyl phenylalalinate; pybox, 2,4-bis-(3-isopropyloxazoline)pyridine; tbbz-pro, N-(4-*tert*-butylbenzoyl) prolinate; tbsp, N-(4-*tert*-butylbenzenesulfonyl) prolinate; tipps-pro, N-(2,4,6-triisopropylbenzenesulfonyl) prolinate.

Synthesis and Reaction of Diazocycloalkanones 8a-8c

*Diazocycloheptan-1-one*²⁰ (**8a**) was synthesized *via* formylation of cycloheptanone²¹ (**6**) (61%) followed by deformylating diazo transfer with TsN_3 (ref.²²; yield 90%; yellow oil, purified by chromatography (silica gel, ether-petroleum ether 33 : 67)). ¹H NMR (200 MHz, CDCl₃): 1.66–1.77 (m, 6 H); 2.50–2.58 (m, 4 H).

1810

Diazotransfer via trifluoroacetylation²³ (Danheiser procedure). To LiHMDS (1 M in hexane, 7.14 ml, 1.10 equivalent) in dry THF (18 ml) the ketone **6** (6.50 mmol) in THF (12 ml) was added dropwise at -78 °C during 15 min. After stirring at -78 °C during 30 min, CF₃CO₂CH₂CF₃ (1.04 ml, 7.8 mmol) was added with a syringe at once. After 10 min, the temperature was raised to -40 °C and kept for 30 min. The mixture was poured into 5% HCl (35 ml) and Et₂O (45 ml). The aqueous layer was extracted with Et₂O (2 × 30 ml). The organic layers were washed with saturated NaCl (35 ml) and then concentrated under reduced pressure. The resulting crude product was immediately dissolved in CH₃CN (25 ml) under argon, and Et₃N (1.35 ml, 9.7 mmol) and H₂O (0.11 ml, 1.0 equivalent) were added. Methanesulfonyl azide²⁴ (MsN₃, 1.17 g, 9.70 mmol) in CH₃CN (20 ml) was added dropwise within 20 min. The mixture was stirred at 25 °C for 2.5 h and then concentrated to 15 ml under reduced pressure. It was diluted with Et₂O (45 ml), and washed with 10% NaOH (3 × 30 ml) and with saturated NaCl. After drying (MgSO₄), filtration, and concentration, the crude product was purified by flash chromatography.

2-Diazocyclooctanone¹¹ (**8b**). Yield 70% via Danheiser procedure; purification by chromatography (silica gel, petroleum ether-ether-NEt₃ 80 : 20 : 1); yellow oil. IR (CHCl₃): 3 053 m, 2 985 s, 2 934 s, 2 087 s, 1 612 s. ¹H NMR (200 MHz, CDCl₃): 1.57-1.80 (m, 8 H); 2.50-2.65 (m, 4 H). ¹³C NMR (50 MHz): 24.4 (t); 25.7 (t); 25.8 (t); 28.4 (t); 29.7 (t); 37.8 (t); 127.8 (s); 198.8 (s). MS: 124 (M⁺), 95 (38), 81 (80), 67 (100), 55 (99).

2-Diazocyclodecanone¹¹ (8c). Yield 27% via Danheiser procedure; purification by chromatography (silica gel, hexane-EtOAc 80 : 20); m.p. 54 °C. IR (CH_2Cl_2): 3 053 m, 2 928 s, 2 082 vs, 1 607 s, 1 357 m. ¹H NMR (200 MHz, $CDCl_3$): 1.30–1.90 (m, 12 H); 2.45–2.61 (m, 2 H); 2.63–2.80 (m, 2 H). ¹³C NMR (100 MHz): 21.4 (t); 22.1 (t); 23.4 (t); 25.6 (t); 25.7 (t); 28.3 (t); 29.6 (t); 37.7 (t); 128.5 (s); 190.1 (s); MS: 152 (M⁺), 95 (38), 67 (100), 55 (85).

Diazo Decomposition of Diazocycloalkanones 8. General Procedure

The diazo ketone **8** (1.00 mmol) in dry CH_2Cl_2 (10 ml) was added, with a syringe pump within 15 h, to the previously dried (heat-gun) catalyst (0.02 mmol) in CH_2Cl_2 (5.0 ml) at 25 °C. After the addition, the solvent was evaporated under reduced pressure, and the residue was purified by flash chromatography to afford the bicyclic ketone **10** (from **8b**) or **11** (from **8c**). The enantiomeric excess of the ketones was determined by GC. For results with various catalysts, see Table I.

cis-Bicyclo[3.3.0]*octan-2-one*²⁵ (**10**). Chromatography on silica gel with hexane–EtOAc 90 : 10; ee by GC with Betadex, 90 °C or Lipodex D, 70 °C. IR (CH_2Cl_2) : 3 053 vs, 2 959 m, 2 870 w, 1 728 vs, 1 459 w, 1 261 m. ¹H NMR (200 MHz, CDCl₃): 1.20–1.70 (m, 4 H); 1.73–1.98 (m, 3 H); 2.10–2.31 (m, 3 H); 2.47–2.65 (m, 1 H); 2.68–2.85 (m, 1 H). ¹³C NMR (100 MHz): 26.1 (t); 26.3 (t); 29.8 (t); 33.4 (t); 38.0 (t); 41.0 (d); 52 (d); 223.5 (s). MS: 124 (M⁺), 95 (66), 80 (60), 68 (39), 67 (100), 55 (27).

cis-Bicyclo[5.3.0]decan-2-one²⁶ (11). Chromatography on silica gel with hexane–EtOAc 90 : 10; absence of induction determined from optical rotation ($[\alpha]_D$ 0). IR (CH₂Cl₂): 3 054 vs, 2 932 s, 1 696 vs, 1 421 m. ¹H NMR (400 MHz, CDCl₃): 1.05–2.05 (m, 12 H); 2.26–2.41 (m, 2 H); 2.46–2.54 (m, 1 H); 3.07–3.16 (m, 1 H). ¹³C NMR (100 MHz): 24.5 (t); 25.4 (t); 26.2 (t); 27.8 (t); 32.5 (t); 35.2 (t); 40.4 (d); 43.3 (t); 54.7 (d); 213.9 (s). MS: 152 (M⁺), 123 (22), 111 (100), 95 (94), 67 (98), 55 (50).

Synthesis and Decomposition of 1-Cyclohexylidene-3-diazopropan-2-one (15)

Cyclohexylidenepropan-2-one (14). This compound was synthesized in 69% yield from cyclohexanone (6d) and diethyl (2-oxopropyl)phosphonate (13) according to Villeras and Rambaud²⁷. ¹H NMR (200 MHz, CDCl₃): 1.44–1.73 (m, 6 H); 2.08–2.19 (m, 5 H); 2.71–2.82 (m, 2 H); 5.97 (s, 1 H).

Cyclohexylidene-3-diazopropan-2-one (15). To sodium hexamethyldisilazane (4.1 ml, 4.00 mmol) in dry THF (5.0 ml) was added dropwise at -78 °C, 1-cyclohexylidenepropan-2-one (14; 500 mg, 3.62 mmol) in THF (10 ml) under nitrogen. After 30 min of stirring at -78 °C CF₃COOCH₂CF₃ (0.51 ml, 4.3 mmol) was added at once. After 10 min, the temperature was allowed to rise to 0 °C. The mixture was hydrolyzed at -20 °C by addition of 1 M HCl (15 ml) and then extracted with Et₂O (3×25 ml). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The resulting oil was dissolved in CH₃CN (12 ml) under argon. Et₂N (0.75 ml, 5.4 mmol), H₂O (0.65 g, 5.4 mmol) and MsN₃ (0.65 g, 5.43 mmol) were added, and the mixture was stirred for 1.0 h. The solvent was partially evaporated, and the remaining solution was dissolved in Et₂O (25 ml) and washed with saturated NaCl (3 \times 25 ml). The organic layer was dried (MgSO₄) and evaporated under reduced pressure and the resulting orange oil was purified by chromatography (silica gel, petroleum ether-Et₂O 80 : 20) to afford 15 (360 mg, 2,19 mmol, 60%). IR (CHCl₂): 1 340 s, 1 605 s, 1 642 s, 2 101 vs, 2 935 m. ¹H NMR (400 MHz, CDCl₂): 1.52-1.74 (m, 6 H); 2.08-2.20 (m, 2 H); 2.79-2.98 (m, 2 H); 5.17 (s br, 1 H); 5.69 (s br, 1 H). ¹³C NMR (100 MHz): 26.2 (t); 27.9 (t); 28.8 (t); 30.2 (t); 38.0 (t); 118.8 (d); 161.0 (s); 186.0 (s). MS: 164 (12, M⁺), 149 (47), 136 (38), 125 (74), 123 (27), 109 (24) 97 (30), 95 (38), 85 (20), 83 (27), 81 (29), 71 (36), 69 (30), 67 (22), 57 (78), 55 (100).

Diazo decomposition of 15. 1,4,5,6,7,7a-Hexahydro-2H-inden-2-one (16). The reaction was carried out as described above with 100 mg of 15 (0.61 mmol). The catalysts were liberated from the residual solvent by heating under reduced pressure prior to use. The ketone²⁸ 16 was isolated as colorless liquid after flash chromatography on silica gel with petroleum ether-Et₂O 50 : 50; ee by GC with Lipodex D column, 120 °C, or Betadex 120, 90–150 °C. For yields and ee's, see Table II. IR (CHCl₃): 2 936 m, 1 697 s, 1 619 s, 1 220 s. ¹H NMR (400 MHz, CDCl₃): 1.13 (qd, J = 12.32, 3.44, 1 H); 1.33–1.57 (m, 2 H); 1.82–1.89 (m, 1 H); 1.95–2.07 (m, 2 H); 2.12–2.30 (m, 2 H); 2.53–2.69 (m, 2 H); 2.79–2.86 (m, 1 H); 5.84 (s br, 1 H). ¹³C NMR (100 MHz): 25.3 (t); 27.1 (t); 31.0 (t); 35.1 (t); 41.8 (t); 42.4 (t); 126.8 (d); 184.6 (s); 209.0 (s).

Synthesis and Decomposition of Alkyl 4-Cyclohexylidene-2-diazo-3-oxobutanoates 24a-24e

Alkyl 4-cyclohexylidene-3-oxobutanoates (**19a, 19b**). The phosphine oxides **18a**, **18b** were synthesized from ethyl diphenylphosphinite²⁹ and alkyl 4-bromo-3-oxobutanoate³⁰ and were condensed with cyclohexanone according to van den Goorbergh³¹.

Methyl 4-cyclohexylidene-3-oxobutanoate (**19a**). Yield 67%. IR (CHCl₃): 1 731 s, 1 682 m, 1 612 m. ¹H NMR (400 MHz, CDCl₃): 1.53–1.72 (m, 6 H); 2.17–2.21 (m, 2 H); 2.79–2.85 (m, 2 H); 3.47 (s, 2 H); 3.74 (s, 3 H); 6.01 (s, 1 H). ¹³C NMR (100 MHz): 15.3 (q); 26.1 (t); 27.9 (t); 28.8 (t); 30.2 (t); 38.2 (t); 65.9 (t); 119.7 (d); 165.6 (s); 168.1 (s); 192.3 (s).

Ethyl 4-cyclohexylidene-3-oxobutanoate (**19b**). Yield 32%. ¹H NMR (200 MHz, $CDCl_3$): 1.26 (t, J = 7.1, 3 H); 1.50–1.71 (m, 6 H); 2.13–2.21 (m, 2 H); 2.76–2.84 (m, 2 H); 3.43 (s, 2 H); 4.19 (q, J = 7.1, 2 H); 6.00 (s, 1 H).

1812

Ester Exchange of 18a. 2,4-Dimethylpentan-3-yl and

Dicyclohexylmethyl 4-Cyclohexylidene-3-oxobutanoates 19c and 19d

The methyl ester **19a** was heated with the appropriate alcohol in refluxing toluene in the presence of 4-dimethylaminopyridine for 17 and 48 h, respectively³². After cooling, the mixture was treated with aqueous NH_4Cl and extracted with EtOAc.

2,4-Dimethylpentan-3-yl 4-cyclohexylidene-3-oxobutanoate (19c). Crude 19c was purified by chromatography (silica gel, petroleum ether-Et₂O 95 : 5). Yield 75%. ¹H NMR (400 MHz, CDCl₃): 0.87 (d, J = 6.9, 6 H); 0.90 (d, J = 6.9, 6 H); 1.53–1.71 (m, 6 H); 1.84–2.00 (m, 4 H); 2.01–2.08 (m, 2 H); 3.50 (s, 2 H); 4.63 (t, J = 6.4, 1 H); 5.60 (s br, 1 H). ¹³C NMR (100 MHz): 17.2 (q); 19.5 (q); 21.9 (t); 22.7 (t); 25.4 (t); 28.6 (t); 29.4 (d); 47.9 (t); 52.8 (t); 84.0 (d); 127.2 (d); 131.1 (s); 167.3 (s); 201.5 (s).

Dicyclohexylmethyl 4-cyclohexylidene-3-oxobutanoate (**19d**). Crude **19d** was purified by chromatography (silica gel, hexane–EtOAc 20 : 1). Yield 28%. ¹H NMR (200 MHz, CDCl₃): 0.81–1.35 (m, 12 H); 1.48–1.81 (m, 18 H); 1.87–2.09 (m, 2 H); 3.14 (s, 2 H); 4.65 (t, J = 5.4, 1 H); 5.59 (s br, 1 H).

Alkyl 4-Cyclohexylidene-2-diazo-3-oxobutanoates 20a-20d

Methyl 4-cyclohexylidene-2-diazo-3-oxobutanoate (**20a**). Synthesized via trifluoroacetylation (Danheiser procedure) in 86% yield. IR (CHCl₃): 3 019 s, 2 138 s, 1 712 m, 1 638 m, 1 438 m. ¹H NMR (400 MHz, CDCl₃): 1.54–1.75 (m, 6 H); 2.22–2.30 (m, 2 H); 2.83–2.88 (m, 2 H); 3.84 (s, 3 H); 6.81 (s, 1 H). ¹³C NMR (100 MHz): 26.2 (t); 28.0 (t); 28.9 (t); 30.8 (t); 38.5 (t); 52.1 (q); 117.7 (d); 161.9 (s); 164.1 (s); 182.4 (s). MS: 222 (21, M⁺), 162 (58), 135 (23), 134 (92), 133 (30), 123 (89), 107 (24), 106 (56), 105 (45), 95 (31), 94 (24), 93 (22), 92 (42), 91 (96), 81 (30), 79 (71), 78 (58), 77 (38), 67 (52), 65 (27), 59 (27), 55 (100), 53 (57), 51 (27). HR MS: 222.0995 ($C_4H_{14}O_3N_2^+$; calculated 222.1005).

Ethyl 4-cyclohexylidene-2-diazo-3-oxobutanoate (**20b**). Yield 30% (not optimized). IR (CHCl₃): 2 933 s, 2 137 s, 1 709 s, 1 638 m, 1 603 w. ¹H NMR (400 MHz, CDCl₃): 1.31 (t, J = 7.1; 3 H); 1.50–1.76 (m, 6 H); 2.19–2.29 (m, 2 H); 2.77–2.89 (m, 2 H); 4.27 (q, J = 7.1, 2 H); 6.80 (s, 1 H). ¹³C NMR (100 MHz): 14.4 (q); 26.3 (t); 28.0 (t); 28.9 (t); 30.8 (t); 38.5 (t); 61.3 (t); 117.9 (d); 161.5 (s); 163.9 (s); 182.6 (s). MS: 236 (22, M⁺), 162 (58), 135 (21), 134 (83), 133 (29), 123 (100), 107 (25), 106 (47), 105 (36), 95 (28), 94 (22), 93 (29), 92 (37), 91 (70), 81 (30), 79 (56), 78 (43), 77 (28), 67 (43), 55 (83), 53 (47).

(2,4-Dimethylpentan-3-yl) 4-cyclohexylidene-2-diazo-3-oxobutanoate (**20c**). Yield 87% by diazo transfer with MsN₃ (procedure of Taber¹³). IR (CHCl₃): 3 020 vs, 2 136 m, 1 708 s, 1 640 m, 1 293 m. ¹H NMR (200 MHz, CDCl₃): 0.87 (d, J = 6.7, 6 H); 0.90 (d, J = 6.7, 6 H); 1.45–1.75 (m, 6 H); 1.81–2.05 (m, 6 H); 4.69 (t, J = 6.3, 1 H); 5.52 (s br, 1 H).

Dicyclohexylmethyl 4-cyclohexylidene-2-diazo-3-oxobutanoate (**20d**). Yield 89% *via* diazo transfer¹³ with MsN₃. IR (CHCl₃): 2 932 s, 2 135 s, 1 707 s, 1 640 m, 1 448 m. ¹H NMR (200 MHz, CDCl₃): 0.85-1.32 (m, 12 H); 1.49-1.81 (m, 18 H); 1.92-2.05 (m, 2 H); 4.73 (t, J = 5.4, 1 H); 5.52 (s br, 1 H).

Alkyl 4-(1-Hydroxycyclohexyl)-3-oxobutanoates 22. General Procedure³³

The appropriate alkyl acetoacetate (2.70 mmol) was added dropwise at 0 °C to NaH (2.90 mmol) in THF (10 ml). The mixture was stirred for 20 min, and the temperature was allowed to rise to 20 °C. It was again cooled to 0 °C and BuLi (2.8 mmol) was added dropwise, and the mixture was stirred for 15 min. To this solution of alkyl acetoacetate dianion (**21a**, **21b**, **21e**) was added cyclohexanone (**6d**; 3.80 mmol) in THF (10 ml), and the mixture was stirred at 0 °C for 30 min. After stirring for 12 h at 20 °C, the reaction mixture was decomposed with aqueous HCl while cooling. It was extracted (Et₂O), dried (MgSO₄), and evaporated under reduced pressure. The crude product was purifed by column chromatography.

Methyl 4-(1-hydroxycyclohexyl)-3-oxobutanoate (**22a**). Yield 66%. Purification on silica gel with petroleum ether–ether 70 : 30. IR (CHCl₃): 3 542 br, 3 019 s, 2 861 w, 1 745 s, 1 709 s, 1 653 w, 1 628 w, 1 228 vs. ¹H NMR (400 MHz, CDCl₃): 1.19–1.73 (m, 10 H); 2.71 (s, 2 H); 3.14 (s br, 1 H); 3.49 (s, 2 H); 3.75 (s, 3 H). ¹³C NMR (100 MHz): 21.9 (t); 25.6 (t); 37.5 (t); 50.6 (t); 52.4 (t); 52.8 (t); 70.9 (s); 167.3 (s); 204.1 (s). MS: 214 (11, M⁺), 196 (20), 171 (28), 139 (36), 126 (21), 123 (26), 122 (51), 116 (100), 101 (45), 99 (88), 98 (26), 97 (28), 95 (20), 84 (42), 81 (84), 74 (21), 70 (25), 69 (49), 59 (41), 57 (25), 56 (21), 55 (74). HR MS: 214.1212 ($C_{11}H_{18}O_{4}^{+}$; calculated 214.1205).

Ethyl 4-(1-hydroxycyclohexyl)-3-oxobutanoate (**22b**). Yield 28%. Purification on silica gel with petroleum ether–ether 70 : 30. IR (CHCl₃): 3 531 br, 2 921 s, 1 736 s, 1 703 s, 1 650 m. ¹H NMR (200 MHz, CDCl₃): 1.11–1.18 (m, 10 H); 1.29 (t, J = 7.2, 3 H); 2.69 (s, 2 H); 3.21 (s br, 1 H); 3.45 (s, 2 H); 4.18 (q, J = 7.2, 2 H). ¹³C NMR (100 MHz): 14.1 (q); 21.9 (t); 25.6 (t); 37.6 (t); 50.9 (t); 52.8 (t); 61.5 (t); 70.9 (s); 166.9 (s); 204.2 (s). MS: 228 (11, M⁺), 210 (20), 185 (27), 139 (44), 130 (100), 126 (28), 123 (36), 122 (55), 115 (31), 99 (83), 98 (32), 97 (42), 95 (24), 88 (33), 85 (36), 84 (68), 81 (94), 71 (24), 70 (31), 69 (58), 57 (69), 56 (31), 55 (43), 55 (81).

(-)-Menthyl 4-(1-hydroxycyclohexyl)-3-oxobutanoate (22e). Yield 64% from (-)-menthyl 3-oxobutanoate³⁴. Purification on silica gel with petroleum ether-ether 95 : 5. ¹H NMR (400 MHz, CDCl₃): 0.77 (d, J = 6.9, 3 H); 0.90 (d, J = 7.4, 3 H); 0.92 (d, J = 6.9, 3 H); 0.95–1.73 (m, 17 H); 1.81–1.92 (m, 1 H); 1.98–2.06 (m, 1 H); 2.71 (s, 2 H); 3.24 (s br, 1 H); 3.45 (s, 2 H); 4.70 (m, 1 H). ¹³C NMR (100 MHz): 16.2 (q); 20.7 (q); 21.9 (t); 22.0 (q); 23.3 (t); 25.6 (t); 26.2 (d); 31.4 (d); 34.1 (t); 37.5 (t); 40.7 (t); 46.9 (d); 51.2 (t); 52.8 (t); 70.8 (s); 75.7 (d); 166.5 (s); 204.4 (s).

Alkyl 4-(1-Hydroxycyclohexyl)-2-diazo-3-oxobutanoates 23

The diazo transfer was effected according to the general procedure of Taber³².

Methyl 4-(1-hydroxycyclohexyl)-2-diazo-3-oxobutanoate (**23a**). Yield 89%. IR (CHCl₃): 3 520 br, 2 936 s, 2 139 s, 1 717 s, 1 638 m. ¹H NMR (400 MHz, CDCl₃): 1.34–1.55 (m, 6 H); 1.56–1.72 (m, 4 H); 3.03 (s, 2 H); 3.45 (m, 1 H); 3.82 (s, 3 H). ¹³C NMR (100 MHz): 21.9 (t); 25.6 (t); 37.8 (t); 49.2 (t); 52.2 (q); 71.5 (s); 161.9 (s); 192.9 (s). MS: 240 (3, M⁺), 169 (52), 142 (34), 137 (27), 123 (20), 109 (20), 99 (32), 97 (32), 95 (24), 81 (69), 55 (100), 54 (44), 53 (20). HR MS: 240.1107 ($C_{11}H_{16}O_4N_2^+$; calculated 240.1110).

Ethyl 4-(1-hydroxycyclohexyl)-2-diazo-3-oxobutanoate (23b). Yield 68%; yellow oil. IR (CHCl₃): 3 520 br, 2 936 s, 2 140 s, 1 713 s, 1 637 m. ¹H NMR (400 MHz, CDCl₃): 1.31 (t, J =

7.2, 3 H); 1.58–1.72 (m, 4 H); 3.03 (s, 2 H); 3.50 (m, 1 H); 4.28 (q, J = 7.2, 2 H). ¹³C NMR (100 MHz): 14.2 (q); 22.0 (t); 25.7 (t); 37.9 (t); 49.3 (t); 61.6 (t); 71.5 (s); 161.6 (s); 193.1 (s). MS: 254 (6, M⁺), 183 (47), 156 (34), 137 (41), 123 (29), 99 (49), 97 (42), 95 (37), 81 (100), 71 (20), 69 (25), 67 (26), 57 (24), 55 (86), 54 (54), 53 (23), 45 (24).

(-)-Menthyl 4-(1-hydroxycyclohexyl)-2-diazo-3-propanoate (**23e**). Yield 98%; pale yellow oil. IR (CHCl₃): 3 510 br, 2 932 s, 2 139 s, 1 705 s, 1 635 m, 1 456 w. ¹H NMR (400 MHz, CDCl₃): 0.80 (d, J = 6.9, 3 H); 0.91 (d, J = 7, 4, 3 H); 0.93 (d, J = 6.9, 3 H); 1.01–1.77 (m, 17 H); 1.78–1.92 (m, 1 H); 2.03–2.11 (m, 1 H); 3.06 (AB, $n_a = 3.075, n_b = 3.047, J = 15.8, 2$ H); 3.63 (s, br, 1 H); 4.82 (td, J = 10.8, 4.4, 1 H). ¹³C NMR (100 MHz): 16.5 (q); 20.7 (q); 21.9 (q); 22.0 (t); 23.6 (t); 25.7 (t); 26.6 (q); 31.5 (d); 34.1 (t); 37.9 (t); 41.1 (t); 47.0 (d); 49.3 (t); 71.5 (s); 76.2 (d); 77.6 (s); 161.3 (s); 193.3 (s).

Alkyl 4-Cyclohexylidene-2-diazo-3-oxobutanoates **20a**, **20b**, **20e** via Dehydration of **23a**, **23b**, **23e**. General Procedure³⁵

To the diazo compound **23** (1.50 mmol) in pyridine (10 ml), POCl₃ (0.50 ml, 5.5 mmol) was added at 0 °C under argon. After 6 h of stirring at 0 °C, the mixture was stirred during 12 h at 20 °C. It was poured on ice/water (50 ml) and extracted with hexane. The organic layer was dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, petroleum ether-ether 95 : 5). Yield: **20a** 50%; **20b** 68%; yellow oils. For data of **20a-20d** see above.

(-)-Menthyl 4-cyclohexylidene-2-diazo-3-oxobutanoate (**20e**). Yield 66%. IR (CHCl₃): 2 930 s, 2 136 s, 1 704 s, 1 640 s. ¹H NMR (400 MHz, CDCl₃): 0.80 (d, J = 6.9, 3 H); 0.85–0.99 (m, 6 H); 1.00–1.78 (m, 17 H); 1.81–1.92 (m, 1 H); 1.96–2.12 (m, 1 H); 4.76–4.88 (m, 1 H); 5.56 (s, 1 H). ¹³C NMR (100 MHz): 16.5 (q); 20.7 (q); 22.0 (q); 22.1 (t); 23.6 (t); 25.4 (t); 26.6 (d); 28.8 (t); 31.5 (d); 34.1 (t); 38.5 (t); 41.2 (t); 47.0 (d); 75.7 (d); 125.7 (d); 131.6 (s); 161.2 (s); 191.0 (s). MS: 346 (1, M⁺), 208 (28), 163 (21), 162 (46), 138 (25), 134 (21), 95 (49), 83 (100), 81 (29), 69 (46), 57 (32), 55 (57).

Decomposition of Diazo Ketoesters **20a–20e**. Alkyl 2-Oxo-1,4,5,6,7,7a-hexahydro-2*H*-indene-1-carboxylates **24a–24e**. General Procedure

For procedure see above: diazo decomposition of diazocycloalkanones 8. For results with various catalysts, see Table III.

Methyl 2-oxo-1,4,5,6,7,7a-hexahydro-2H-indene-1-carboxylate (**24a**). Yield 50–75%. IR (CHCl₃): 2 936 m, 1 710 s, 1 623 w, 1 364 m. ¹H NMR (200 MHz, $CDCl_3$): 1.07–1.68 (m, 3 H); 1.80–2.09 (m, 2 H); 2.16–2.42 (m, 2 H); 2.78–2.90 (m, 2 H); 2.98–3.11 (m, 2 H); 3.75 (s, 3 H); 5.80 (s, 1 H). ¹³C NMR (100 MHz): 24.9 (t); 26.5 (t); 30.8 (t); 34.0 (t), 45.8 (d); 52 5 (q); 59 1 (d); 124.9 (d); 169.5 (s); 184.2 (s); 201.1 (s).

*Ethyl 2-oxo-1,4,5,6,7,7a-hexahydro-2H-indene-1-carboxylate*³⁶ (**24b**). ¹H NMR (400 MHz, CDCl₃): 1.26–1.68 (m, 7 H); 1.84–1.95 (m, 1 H); 1.96–2.11 (m, 1 H); 2.21–2.39 (m, 2 H); 2.81–2.93 (m, 1 H); 2.96–3.05 (m, 2 H); 4.15–4.31 (q, J = 7.3, 2 H); 5.82 (s, 1 H). ¹³C NMR (100 MHz): 14.4 (q); 25.3 (t); 26.8 (t); 31.1 (t); 34.3 (t); 46.1 (d); 59.6 (d); 61.8 (t); 125.2 (d); 169.4 (s); 184.3 (s); 201.5 (s).

(2,4-Dimethylpentan-3-yl) 2-oxo-1,4,5,6,7,7a-hexahydro-2H-indene-1-carboxylate (**24c**). Yield 10–20%. IR (CHCl₃): 2 939 m, 1 724 s, 1 701 s, 1 623 s, 1 464 w. ¹H NMR (400 MHz, CDCl₃): 0.83–0.96 (m, 12 H); 1.15–1.63 (m, 3 H); 1.84–1.98 (m, 3 H); 2.00–2.07 (m, 1 H); 2.21–2.37 (m, 2 H); 2.81–2.88 (m, 1 H); 3.01–3.09 (m, 2 H); 4.60 (t, J = 6.2, 1 H); 5.82 (s, 1 H).

 ^{13}C NMR (100 MHz): 17.1 (q); 17.3 (q); 19.5 (q); 25.1 (t); 25.1 (t); 26.6 (t); 29.4 (d); 30.8 (t); 34.0 (t); 46.3 (d); 59.7 (d); 83.9 (d); 125.2 (d); 183.5 (s); 201.3 (s).

Dicyclohexylmethyl 2-oxo-1, 4, 5, 6, 7, 7a-hexahydro-2H-indene-1-carboxylate (24d). Yield 15–79%. ¹H NMR (400 MHz, CDCl₃): 0.71–2.08 (m, 27 H); 2.17–2.39 (m, 2 H); 2.80–2.87 (m, 1 H); 2.98–3.03 (m, 2 H); 4.68 (t, J = 5.8, 1 H); 5.82 (s, 1 H). ¹³C NMR (100 MHz): 25.1 (t); 26.0 (t); 26.1 (t); 26.2 (t); 26.3 (t); 26.4 (t); 26.6 (t); 27.2 (t); 27.6 (t); 29.80 (t); 20.82 (t); 30.9 (t); 34.1 (t); 38.3 (d); 38.4 (d); 46.2 (d); 59.6 (d); 82.7 (d); 125.1 (d); 169.2 (s); 183.6 (s); 201.3 (s).

(-)-Menthyl 2-oxo-1,4,5,6,7,7a-hexahydro-2H-indene-1-carboxylate (**24e**). Yield 0-50%. ¹H NMR (400 MHz, CDCl₃): 0.76 (d, J = 6.9, 3 H); 0.79–1.72 (m, 16 H); 1.80–2.14 (m, 4 H); 2.21–2.38 (m, 2 H); 2.81–2.89 (m, 1 H); 2.96–3.06 (m, 2 H); 4.68–4.77 (m, 1 H); 5.80 (s br, 1 H). ¹³C NMR (100 MHz): 16.2 (q); 20.7 (q); 21.9 (q); 23.4 (t); 25.1 (t); 25.8 (d); 26.6 (t); 30.9 (t); 31.5 (d); 34.0 (t); 34.2 (t); 40.8 (t); 46.0 (d); 46.9 (d); 59.6 (d); 75.5 (d); 125.0 (d); 168.8 (s); 183.6 (s); 201.2 (s).

Synthesis and Decomposition of 8-Diazocyclooct-2-en-1-one³⁷ (26)

Diazocyclooct-2-en-1-one (26)

Cyclooct-2-en-1-one³⁸ (**25**) was converted in 62% yield to **26** by the general procedure of Danheiser (see above). IR (CHCl₃): 3 016 s, 2 934 m, 2 085 s, 1 636 w, 1 578 m. ¹H NMR (200 MHz, CDCl₃): 1.68–1.80 (m, 4 H); 2.26–2.36 (m, 2 H); 2.55–2.62 (m, 2 H); 2.55–2.62 (m, 2 H); 5.76–5.84 (dt, J = 12.4, 1.5, 1 H); 6.07–6.20 (dt, J = 12.5, 6.3, 1 H). ¹³C NMR (100 MHz): 22.5 (t); 23.9 (t); 28.2 (t); 29.7 (t); 126.7 (d); 139.4 (d); 190.5 (s).

Diazo Decomposition of **26**. cis-Bicyclo[3.3.0]oct-3-en-2-one (4,5,6,6a-Tetrahydropentalen-3(3aH)-one (**27**))

The reactions were carried out under the conditions described above: see diazo decomposition of diazocycloalkanones **8**. For results, see Table IV. The ee was determined by GC with Lipodex E column, 90 °C. Data of **27**: IR (CHCl₃): 3 013 m, 2 958 m, 2 870 w, 1 700 s, 1 584 m, 1 450 w, 1 348 m, 1 219 m. ¹H NMR (400 MHz, CDCl₃): 1.19–1.33 (m, 1 H); 1.57–1.77 (m, 4 H); 1.87–1.94 (m, 1 H); 2.66–2.73 (m, 1 H); 3.32–3.39 (m, 1 H); 6.14 (dd, J = 5.3, 1.8, 1 H); 7.53 (dd, J = 5.5, 3.1, 1 H);. ¹³C NMR (100 MHz): 23.5 (t); 29.3 (t); 30.1 (t); 46.6 (d); 49.6 (d); 134.5 (d); 167.4 (d); 213.5 (s).

RESULTS AND DISCUSSION

Transannular Insertion of 2-Diazocycloalkan-1-ones 8

The 2-diazocycloalkan-1-ones **8a–8c** were prepared from the corresponding ketones **6** either *via* formylation followed by deformylating diazo transfer with tosyl azide (TsN₃) in the presence of Et_3N , as described^{20–22} or *via* trifluoroacetylation and subsequent diazo transfer with MsN₃ (Scheme 1), without isolation of the intermediates **7** (method of Danheiser²³). The Danheiser procedure was superior.

1815

The decomposition of 2-diazocycloheptan-1-one (8a) with $[Rh_2(OAc)_4]$ or [Cu(acac)₂] afforded an untractable mixture of products in which cyclohept-2-en-1-one (9a) could be detected spectroscopically. In contrast, the higher homologue, 2-diazocyclooctan-1-one (8b) reacted with $[Rh_2(OAc)_4]$ almost quantitatively via transannular insertion to cis-bicyclo[3.3.0]octan-2-one (10) (Table I). Other Rh(II) catalysts exhibited similar selectivity for transannular C-H insertion, and the potentially competitive 1,2-hydrogen migration leading to 9b was not observed with 8b. Even Cu catalysts, which are not particularly prone to promote C-H insertions, provided the bicyclic ketone 10 in appreciable yields. The Cu(I) catalysts were, however, not sufficiently reactive and some unreacted diazoketone **8b** was recovered. Decomposition of 8c with Cu(I) and Rh(II) catalysts afforded cis-bicyclo-[5.3.0]decan-2-one (11) in high yield, rather than the expected bicyclo-[4.4.0]decan-2-one (12) which is reportedly formed upon decomposition of 8c with CuO. Note that in the Cu(II)-catalyzed diazo decompositions, the catalytically acive species is a Cu(I) compound which is formed by reduction of Cu(II) by the diazo compound.

(i) LiHMDS (1.1 eq.), CF_3CO_2CH_2CF_3 (1.2 eq.), -78 °C; (ii) Et_3N (1.5 eq.), H_2O (1 eq.), MsN_3 (1.5 eq.), 25 °C; (iii) Rh(II), 5%, 25 °C

SCHEME 1

The decomposition of 2-diazocycloalkan-1-ones can proceed either *via* 1,2-hydrogen migration to cycloalkenones or *via* transannular C–H insertion. In free carbenes, 1,2-hydrogen migration is a very fast process with activation energies in the range of *ca* 5 kcal/mol (ref.³⁹). With metal carbenoids, however, the selectivity is different, and cyclopropanations as well as intramolecular C–H insertions can be competitive with hydrogen migration. Intramolecular insertions occurring in preference over hydrogen

migration from an adjacent CH_3 group of metal carbenoids have been reported⁴⁰. Olefin formation becomes predominant if the adjacent group is CH_2 (ref.⁴¹). In our series of diazo ketones hydrogen migration predominates with diazocycloheptanone (**8a**), presumably owing to the strain in the putative transannular insertion product (bicyclo[3.2.0]heptan-2-one), but is virtually absent with **8b** and **8c**. The still higher diazocycloalkanones were not investigated owing to their known tendency to suffer hydrogen migration.

The metal-catalyzed decomposition of 2-diazocycloalkan-1-ones **8** has been investigated in the past²⁰. Cycloalkenones **9** were formed with Ag₂O, instead of ring-contracted products derived from the expected Wolff rearrangement. Decomposition with CuO, in turn, resulted in mixtures of products of transannular insertion together with cycloalkenones. Thus 2-diazocyclodecan-1-one (**8c**) afforded *cis*-bicyclo[4.4.0]decan-2-one (**12**; 13%) and cyclodec-2-en-1-one (**9c**; 39%) upon exposure to CuO.

TABLE I				
Transannular	insertion	of	2-diazocycloalkan-1-ones ^a	3

Com- pound	Catalyst	Solvent	Product	Yield, %	ee, %
8b	[Rh ₂ (OAc) ₄] (1a)	CH ₂ Cl ₂	10	96	-
8 b	$[Rh_2{(S)-meba}_4]$ (1b)	CH_2Cl_2	10	86	12
8 b	$[Rh_2{(5S)-mepy}_4]$ (2a)	CH_2Cl_2	10	71	0
8 b	$[Rh_2{(5S)-mepy}_4]$ (2a)	pentane	10	40	10
8 b	$[\operatorname{Rh}_2\{(4R)\operatorname{-mppim}_4] (\mathbf{2b})$	CH_2Cl_2	10	90	9
8 b	$[Rh_2{(R)-(-)-bnp}_4]$ (4a)	CH_2Cl_2	10	60	9
8b	[Cu-semicorrine] (5b)	CH_2Cl_2	10	50^b	7
8b	[Cu{(<i>R</i>)-isoPr-pybox}] (5c)	CH_2Cl_2	10	37 ^c	19
8c	[Cu(acac) ₂] (5a)	CH_2Cl_2	11	56	-
8c	$[Rh_2(OAc)_4]$ (1a)	CH_2Cl_2	11	83	-
8c	$[Rh_2{(2S)-mepy}_4]$ (1a)	CH_2Cl_2	11	82	0
8c	$[Rh_2{(4R)-mppim}_4]$ (2b)	CH_2Cl_2	11	60	0
8c	$[Rh_2{(R)-(-)-bnp}_4]$ (3a)	CH_2Cl_2	11	50	0
8c	[Cu-semicorrine] (4b)	DCE^d	11	30	0

^{*a*} Conditions: Syringe pump addition of **8** (1.00 mmol) in CH_2Cl_2 to the catalyst (0.02 mmol) in CH_2Cl_2 at room temperature (23 °C). ^{*b*} Determined by GC, Lipodex E column. ^{*c*} Unreacted diazo ketone recovered. ^{*d*} DCE, dichloroethane, 80 °C.

Diazo decomposition by several chiral Rh(II) catalysts, which have shown exceptional enantioselectivity in CH insertions of diazo esters, afforded satisfactory yields of **10**, but were disappointing with respect to enantioselectivity with ee's around 10%. The chiral Cu(I) catalysts **5b** and **5c** produced enantioselectivities of 7 and 19%, respectively. In addition to the catalysts mentioned in Table I, several other Rh(II) prolinates and some of the Cu(I)–Schiff base complexes of O'Connar⁴² were also examined, but no significant improvement could be achieved. A selection of chiral Rh(II) and Cu(I) catalysts was also tested with **8c**. However, these reactions proceeded without enantioselectivity.

Intramolecular Insertion of 1-Cyclohexylidene-3-diazopropan-2-one (15) and 4-Cyclohexylidene-2-diazo-3-oxobutanoates **23a**–**23e**

1-Cyclohexylidenepropan-2-one (14) was synthesized from cyclohexanone (6d) and diethyl (2-oxopropyl)phosphonate (13) in the presence of K_2CO_3 , and transformed to the diazo ketone 15 by the procedure of Danheiser²³. Reaction of 15 with $[Rh_2(OAc)_4]$ under the usual conditions furnished the cyclized product 1,4,5,6,7,7a-hexahydro-2*H*-inden-2-one (16) in 60% yield. This yield is in the range expected for intramolecular insertions of diazo ketones into allylic C–H bonds⁴³ and compares favorably with that reported for cyclization of the isomeric diazo ketone 17 to 16 with $[Rh_2(OAc)_4]$ (26%) and $[Cu(OTf)_2]$ (59%, ref.⁴⁴) or with BF₃·Et₂O (50%, ref.⁴⁵). The yields decreased slightly with the asymmetric catalysts. Asymmetric induction was very modest with all of the catalysts investigated. The highest enantio-selecitivty (18%) resulted upon exposure of 15 to $[Rh_2\{(R)-(-)-bnp\}_4]$ (4a).

(i) NaHMDS (1.1 eq.), CF₃CO₂CH₂CF₃ (1.2 eq.), -78 °C; (ii) Et₃N (1.5 eq.), H₂O (1 eq.), MsN₃ (1.5 eq.), 25 °C; (iii) Rh(II), 5%, 25 °C; (iv) [Rh₂(OAc)₄] or [Cu(OTf)₂] or BF₃Et₂O

The unsaturated diazo ketoesters 20a, 20b were synthesized by condensation of cyclohexanone with the phosphine oxides²⁹ 18a, 18b to afford the unsaturated esters 19a, 19b in 67 and 32% yields, respectively³¹. The 2,4-dimethylpentan-3-yl and dicyclohexylmethyl esters 19c, 19d, in turn, were synthesized via ester exchange of 19a with the respective alcohols in the presence of DMAP in refluxing toluene³². Diazo transfer according to Danheiser²³ proceeded in 80-90% yield to the diazo ketoester 20. Alternatively, diazo esters 20 were accessible via condensation of cyclohexanone (6d) with alkyl dilithioacetoacetate (21). Since dehydration of the intermediate alcohol 22 to 19 could not be achieved^{33,46}, the sequence of steps was inverted. *i.e.*, diazo transfer was effected prior to dehydration. Diazo transfer with 22 was carried out according to Taber⁴⁷, and dehydration of the diazo alcohol 23 proceeded smoothly to 20 under the conditions reported by Padwa (POCl₃/pyridine)⁴⁸. This approach was used for the preparation of 20a, 20b, and 20e.

The intramolecular insertion of the methyl and ethyl esters 20a, 20b proceeded in 80–85% yield to the known hexahydro-2H-indene derivative **24a**. 24b (cis-isomer). The yields with the sterically more crowded esters significantly decreased to 30-50%. These reactions were accompanied by products of carbenoid insertions into the C-H bonds of the alcohol moiety, a well-known phenomenon in reactions of menthyl diazoacetates⁴⁹. Owing to their insufficient activity, the chiral Rh(II) carboxamidate catalysts were not generally used for diazo decomposition in this series, but were replaced by catalysts based on optically active carboxylic acids and binaphthol phosphates. Yields of the desired insertion products were considerably lower

Intramolecular C-H insertion of 1-cyclonexylidene-3-diazopropan-z-one (13)					
Catalyst	16, yield, %	ee, %			
$[\operatorname{Rh}_2(\operatorname{OAc})_4]$ (1a)	60	-			
$[Rh_2{(S)-(-)-ptpa}_4]$ (1e)	40	3			
$[Rh_2{(2S)-mepy}_4]$ (2a)	24	5			
$[Rh_2{(S)-tbps}_4]$ (3a)	48	5			
$[\operatorname{Rh}_2\{(S)\operatorname{-naph-pro}_4]$ (3d)	36	3			
$[Rh_2{(S)-(-)-bnp}_4]$ (4a)	42	18			

^a For conditions. see Table I.

TABLE II

than with $[Rh_2(OAc)_4]$ and enantioselectivities varied from 0 to 23%. Representative examples are summarized in Table III.

(i) Et₃N (2 eq.), MsN₃ (1.1 eq.), 25 °C; (ii) Pyridine, POCl₃ (4 eq.), 0 °C, (iii) Rh(II), 5%, 25 °C; (iv) LiHMDS (1.1 eq.), CF₃CO₂CH₂CF₃ (1.2 eq.), -78 °C; (v) Et₃N (1.5 eq.), H₂O (1 eq.), MsN₃ (1.5 eq.), 25 °C

SCHEME 3

1820

Transannular Insertion of 8-Diazocyclooct-2-en-1-one (26)

8-Diazocyclooct-2-en-1-one (**26**) was synthesized by diazo transfer with cycloct-2-en-1-one (**25**) according to Danheiser²³. Exposure of **26** to $[Rh_2(OAc)_4]$ afforded *cis*-bicyclo[3.3.0]oct-3-en-2-one (4,5,6,6a-tetrahydropentalen-3(3a*H*)-one) (**27**) in 60% yield (Table IV). With the chiral Rh(II) carboxamidate catalysts the yields were somewhat lower, but no significant level of enantioselectivity could be achieved.

(i) Br₂ (1 eq.), HOCH₂CH₂OH (1 eq.). 5-10 °C, MeOH (2 eq.), reflux 72 h; (ii) H₂SO₄ 5%; (iii) LiHMDS (1.1 eq.), CF₃CO₂CH₂CF₃ (1.2 eq.), -78 °C; (iv) Et₃N (1.5 eq.), H₂O (1 eq.), MsN₃ (1.5 eq.), 25 °C; (v) Rh(II) or Cu(I), 5%, 25 °C

SCHEME 4

Enantioselectivity in C-H Insertions of Diazo Ketones

The absence of enantioselectivity in transition metal-catalyzed decompositions of diazo ketones is a well known phenomenon. Doyle has proposed an interpretation for the intramolecular cyclopropanation of diazo esters as compared to that of the analogous diazo ketones in the presence of Rh(II) carboxamidates^{4c}: In the diazo esters the carbenoid reaction occurs from a conformation **28a** in which the carbonyl group of the metal-complexed carbene points away from the plane defined by the ligands of the metal. In

TABLE III Intramolecular insertion^a of alkyl 4-cyclohexylidene-2-diazo-3-oxobutanoates **19a-19e**

Compound	R	Catalyst	24 , yield, %	ee, de, %
20a	Me	[Rh ₂ (OAc) ₄] (1a)	85	_
20a	Me	$[Rh_2{(+)-dmanth}_4]$ (1d)	65	13
20a	Me	$[Rh_2{(S)-tbps}_4]$ (3a)	65	13
20a	Me	$[\operatorname{Rh}_2\{(S) - \operatorname{tipps-pro}_4]$ (3b)	81	8
20a	Me	$[Rh_2{(S)-tbbz-pro}_4]$ (3c)	95	7
20a	Me	$[Rh_2\{(\textbf{R})-Me_2bnhp\}_4] (\textbf{4b})$	66	12
20Ь	Et	$[Rh_2(OAc)_4]$ (1a)	80	_
20Ь	Et	$[Rh_2{(5S)-mepy}_4]$ (2a)	20	5
20Ь	Et	$[Rh_2{(R)-(-)-bnp}_4]$ (4a)	70	10
20c	(isoPr) ₂ CH	$[Rh_2(OAc)_4]$ (1a)	40	_
20 c	(isoPr) ₂ CH	$[Rh_2{(S)-(-)-ptpa}_4]$ (1e)	20	0
20 c	(isoPr) ₂ CH	$[\operatorname{Rh}_2\{(S) - \operatorname{tbps}\}_4]$ (3a)	12	2
20d	$(C_6H_{11})_2CH$	$[Rh_2(OAc)_4]$ (1a)	31	-
20d	$(C_{6}H_{11})_{2}CH$	$[Rh_2(+)-mpmt]_4]$ (1c)	15	?
20d	$(C_{6}H_{11})_{2}CH$	$[Rh_2{(S)-(-)-ptpa}_4]$ (1e)	30	3
20d	$(C_6H_{11})_2CH$	$[Rh_2{(R)-(-)-bnp}_4]$ (4a)	32	0
20e	(-)-Menthyl	$[Rh_2(OAc)_4]$ (1a)	50	_
20e	(-)-Menthyl	$[\operatorname{Rh}_2\{(R)\operatorname{-meba}_4]$ (1b)	40	16
20e	(–)-Menthyl	$[Rh_2{(S)-ptleu}_4]$ (1f)	30	8
20e	(–)-Menthyl	$[\operatorname{Rh}_2\{(S) - \operatorname{tbps}\}_4]$ (3a)	35	0

^a For conditions, see Table I.

this conformation, the chain containing the double bond is in close proximity of the chiral ligands. In contrast, in the case of diazo ketones, the carbonyl group of the product determining conformation **29b** might be oriented towards the plane of the ligands. In this conformation, the hydrocarbon chain containing the reacting double bond is turned away from the chiral ligands, the interactions with the ligands are reduced and enantiocontrol decreases. A similar situation could prevail for intramolecular insertions. However, it is not clear why carbenoids derived from diazo esters prefer conformation **28a** and carbenoids derived from diazo ketones should occur preferentially in conformation **29b**.

Dovle⁵⁰ and Hashimoto^{3d,11} have provided models for asymmetric induction for intramolecular insertions of diazo esters and diazo amides with Rh(II) carboxamidate and carboxylate catalysts, respectively. The X-ray structures of their catalysts exhibit some, though limited structural similarities around the coordination site of the carbene. In both cases, two adjacent quadrants are essentially occupied by the chiral ligands. In contrast, the chiral Rh(II) binaphthol phosphate and chiral Cu(I) catalysts have c₂ symmetry and, although all of these catalysts may produce enantioselectivity with diazo esters and diazo amides, they are unselective with diazo ketones. Since catalysts as different as c_2 -symmetric Cu(I)-semicorrin complex 5b, the Cu(I)-pybox catalyst 5c, the Rh(II) carboxylates, Rh(II) carboxamidates, and Rh(II) binaphthol phosphates fail with respect to enantioselectivity with diazo ketones, it appears that this failure might arise from the diazo ketones or the carbenes derived therefrom rather than from the catalysts. The carbenes derived from diazo ketones differ from the ester and amide counterparts with respect to two properties: resonance interactions between the heteroatoms and the carbonyl group in oxycarbonyl

	-		
Catalyst	Solvent, T, °C	27 , yield, %	ee, %
[Rh ₂ (OAc) ₄] (1a)	CH ₂ Cl ₂ , 23	60	_
$[Rh_2{(2S)-mepy}_4]$ (2a)	DCE, 80	30	5
$[Rh_2{(4R)-mppim}_4]$ (2b)	CH ₂ Cl ₂ , 23	52	10
$[Rh_2{(R)-(-)-bnp}_4]$ (4a)	CH ₂ Cl ₂ , 23	55	5

INDEL IV							
Transannular	insertion ^a	of	8-diazoc	yclooct.	2-en-	1-one	(26)

^a For conditions, see Table I.

TADLE IV

carbenes and amides, respectively, will result in a decrease in positive charge at the carbonyl group and, thereby, render the carbene less electron-deficient. The selectivity of the carbene decreases with increasing electron deficiency. The question has not been investigated systematically with diazo ketones, but it is known that the Hammett o-value for intramolecular benzylic insertion of diazo acetoacetates decreases from -1.39 with $[Rh_2(acam)_4]$ (acam = acetamide) to -1.26 with $[Rh_2(OAc)_4]$ and -0.66 with $[Rh_2(pfb)_4]$ (pfb = perfluorobutyrate)⁵¹. Note that in the above mentioned linear free energy relationships, the electrophilic nature of the carbene was modulated by the electron-attracting nature of the ligands of the catalyst, and not by the substituent of the carbene. A less electron-withdrawing ligand will lead to a later transition state and, hence, to higher selectivity. Pirrung and Morehead have related the selectivity of the Rh-carbenoids with the degree of backbonding from the metal to the vacant p-orbital of the carbene. Backbonding increases the stability of the carbene and, hence, its selectivity⁵². These tendencies should apply in analogy to diazo ketones which are expected to produce more electrophilic and, therefore, less selective carbenes in comparison with carbenes derived from diazo esters or amides.

In addition, conformational effects may be of importance in intramolecular and transannular insertions. To our knowledge, no data are available for the preferred conformations and the rotational barriers of oxocarbenes, and therefore we limit the discussion on consequences of the introduction of functionalities adjacent to the carbonyl group. In acyclic aldehydes and ketones, the most stable conformations have very similar energies and the rotational barriers are small, in the range of 0.7-1.2 kcal/mol (ref.⁵³). A double bond conjugated with the carbonyl function has only little effect on the conformational mobility. Acrolein exists mainly in the s-trans conformation which is more stable by 1.7 kcal/mol than the s-cis conformer; the rotational barrier is 5.0-6.4 kcal/mol. Acrylic acid and acrylic esters exhibit small energy differences between the *s-cis* and the s-trans conformations, and the rotational barriers are below 4 kcal/mol. Esters occur in two preferred conformations, since the C-O bond has a considerable double bond character. The Z- (or trans) conformer 30 is more stable by 5-6 kcal/mol than the E- (or cis) isomer 31 with a rotational barrier of 10-13 kcal/mol. In amides the structures are nearly planar; in N-methylacetamide the Z-conformer is more stable than E by 2.1-2.5 kcal/mol, and the barrier for rotation is 21.3 kcal/mol. Inspection of molecular models shows that in the case of intramolecular C-H insertions, formation of a five-membered ring may not occur from the Z-isomer 31, the reacting centers being too far apart. The *E*-conformer **30** is more suited; however, in order to allow interaction between the carbenic centre and both atoms of the reacting C–H bond, which is required to reach the three-membered transition state for insertion, the conformation most favorable for insertion has the O–C bond of the alcohol bent out of the plane of the carbonyl group as depicted in **32**. This implies that the rotational barrier must at least partly be overcome in order to reach the transition state for insertion. This results in an increased energy of activation and, therefore, in a later transition state and higher selectivity in comparison with that observed with diazo ketones. An analogous argument should apply to diazo amides.

SCHEME 5

Resonance stabilization of the carbene and conformational effects are interconnected; the consequences of both effects point into the same direction, and they are consistent with the experimental results presently available. It is clear, however, that this hypothesis should be tested by experimental and theoretical methods.

The authors are indebted to Prof. M. A. McKervey for providing samples of the Rh(II) prolinate catalysts. This work was supported by the Swiss National Science Foundation (grants No. 20-45255.95 and No. 20-48156.96) and by the University of Geneva.

REFERENCES

- 1. Doyle M. P. in: *Comprehensive Organometallic Chemistry II* (L. S Hegedus, Ed.) Vol. 12, p. 421. Pergamon Press, Oxford 1995.
- Padwa A., Austin D. J., Hornbuckle S. F.: J. Org. Chem. 1996, 61, 63; b) Johnson D. S., Boger D. L.: Chemtracts-Organic Chemistry 1994, 31; c) Padwa A., Austin D. J., Price A. T., Semones M. A., Doyle M. P., Protopopova M. N., Winchester W. R., Tran A.: J. Am.

Chem. Soc. **1993**, *115*, 8669; d) Padwa A., Austin D. J., Hornbuckle S. F., Semones M. A., Doyle M. P., Protopopova M. N.: *J. Am. Chem. Soc.* **1992**, *114*, 1874.

- a) Doyle M. P., Forbes D. C.: Chem. Rev. 1998, 98, 911; b) McKervey M. A., Doyle M. P.: J. Chem. Soc., Chem. Commun. 1997, 983; c) Doyle M. P., McKervey M. A., Ye T.: Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. Wiley, New York 1997; d) Sulikowski G. A., Kobporn L. C., Sulikowski M. M.: Tetrahedron: Asymmetry 1998, 9, 3145.
- a) Tokunoh R., Fähndrich B., Pfaltz A.: Synlett 1995, 491; b) Piqué C., Tomiyama H., Sodeoka M., Shibasaki M.: Tetrahedron Lett. 1996, 37, 2449; c) Doyle M. P., Eismont M. Y., Zhou Q.-L.: Russ. Chem. Bull. 1977, 46, 955.
- 5. a) McKervey M. A., Ye T.: *J. Chem. Soc., Chem. Commun.* 1992, 823; b) Watanabe N., Ogawa T., Ohtake Y., Ikegami S., Hashimoto S.: *Synlett* 1996, 85; c) Watanabe N., Ohtake Y., Hashimoto S., Shiro M., Ikegami S.: *Tetrahedron Lett.* 1995, *36*, 1491; d) Davies H. L. M., Bruzinski P. R., Lake D. H., Kong N., Fall M. J.: *J. Am. Chem. Soc.* 1996, *118*, 6897.
- 6. a) Taber D. F., Stiriba S.-E.: Chem. Eur. J. **1998**, 4, 990; b) Ye T., McKervey M. A.: Chem. Rev. **1994**, 94, 1091
- 7. a) Müller P., Polleux P.: *Helv. Chim. Acta* **1994**, *77*, 645; b) Doyle M. P., Dyatkin A. B., Roos G. H. P., Cañas F., Pierson D. A., van Basten A., Müller P., Polleux P.: *J. Am. Chem. Soc.* **1994**, *116*, 4507.
- Müller P., Baud C., Ene D., Motallebi S., Doyle M. P., Brandes B. D., Dyatkin A. B., See M. M.: *Helv. Chim. Acta* 1995, 78, 459.
- 9. Müller P., Baud C., Jacquier Y.: Can. J. Chem. 1998, 76, 738.
- 10. Ferris L., Haigh D., Moody C. J.: Tetrahedron Lett. 1996, 37, 107.
- 11. Hashimoto S., Watanabe N., Sato T., Shiro M., Ikegami S.: Tetrahedron Lett. 1993, 34, 5109.
- 12. Doyle M. P., Winchester W. R., Protopopova M. N., Kazala A. P., Westrum L.: Org. Synth. 1995, 73, 13.
- 13. Doyle M. P., Zhou Q.-L., Raab C. E., Roos G. H. P., Simonsen S. H., Lynch V.: *Inorg. Chem.* **1996**, *35*, 6064.
- 14. a) Kennedy M., McKervey M. A., Maguire A. R., Roos G. H. P.: J. Chem. Soc., Chem. Commun. 1990, 361; b) McKervey M. A., Ye T.: J. Chem. Soc., Chem. Commun. 1992, 823; c) Ye T., McKervey M. A., Brandes B. D., Doyle M. P.: Tetrahedron Lett. 1994, 35, 7269.
- a) Pirrung M. C., Zhang J., McPhail A. T.: J. Org. Chem. 1991, 56, 6269; b) Pirrung M. C., Zhang M. C., Morehead A. T.: Tetrahedron Lett. 1994, 35, 6229.
- 16. Nägeli I.: Ph.D. Thesis (No. 3018). University of Geneva, Geneva 1998.
- a) Pfaltz A.: Acc. Chem. Res. **1993**, 26, 339; b) Fritschi H., Leutenegger U., Siegmann K., Pfaltz A., Keller W., Kratky C.: Helv. Chim. Acta **1988**, 71, 13.
- 18. Gupta A. D., Bhuniya D., Sigh V. K.: Tetrahedron 1994, 50, 13725.
- 19. a) Pierson N., Fernadez-Garcia C., McKervey M. A: *Tetrahedron Lett.* 1997, 26, 4705;
 b) Watanabe N., Ogawa T., Ohtake Y., Ikegami S., Hashimoto S.: *Synlett* 1996, 85.
- 20. a) Regitz M., Rüter J.: Chem. Ber. 1968, 101, 1263. b) Regitz M., Rüter J.: Chem. Ber. 1969, 102, 3877.
- 21. Prelog V., Ruzicka L., Metzler O.: Helv. Chim. Acta 1947, 30, 1883.
- 22. Regitz M., Hocker J., Liedhegener A.: Org. Synth., Coll. Vol. V 1973, 179.
- 23. Danheiser R. L., Miller R. F., Brisbois R. G., Park S. Z.: J. Org. Chem. 1990, 55, 1959.
- 24. Taber D. F., Ruckle R. E., Hennessy M. J.: J. Org. Chem. 1986, 51, 4077.

1826

- a) Whitesell J. K., Minton M. A., Felman S. W.: J. Org. Chem. 1983, 48, 2193; b) Glover
 S. H., Marr D. H., Stothers J. B., Tan C. T.: Can. J. Chem. 1975, 53, 1351; c) Trost B. M., Bogdanowicz M. J.: J. Am. Chem. Soc. 1973, 95, 5311.
- 26. a) Curci R., Fiorentino M., Fusco C., Rossella M., Ballisteri F. P., Failla S., Tomaselli G. A.: *Tetrahedron Lett.* 1992, 33, 7929; b) House H. O., Gaa P. C., Van Derveer D.: *J. Org. Chem.* 1983, 48, 1661; c) Ciabattoni J., Campbell R. A., Renner C. A., Concannon P. W.: *J. Am. Chem. Soc.* 1970, 92, 3826; d) Pattenden G., Smithies A. J., Walter D. S.: *Tetrahedron Lett.* 1994, 35, 2413.
- 27. Villieras J., Rambaud M.: Synthesis 1983, 300.
- 28. a) Poss A. J., Belter R. K.: J. Org. Chem. 1987, 52, 4810; b) Negishi E., Holmes S. J., Tour J. M., Miller J. A., Cederbaum F. E.: J. Am. Chem. Soc. 1989, 111, 3336.
- 29. Rabinowitz R., Pellon J.: J. Org. Chem. 1961, 26, 4623.
- 30. Swendsen A., Boll P. M.: Tetrahedron 1973, 29, 4254.
- 31. van den Goorbergh J. A. M., van der Gen A.: Rec. Trav. Chim. Pays-Bas 1983, 102, 393.
- 32. Taber D. F., Amedio J. C., Jr., Raman K.: J. Org. Chem. 1988, 53, 2984.
- 33. Berubé G., Fallis A. G.: Can. J. Chem. 1991, 69, 80.
- 34. Landais Y., Planchenault D.: Tetrahedron 1997, 53, 2855.
- 35. Padwa A., Kulkarni Y. S., Zhang Z.: J. Org. Chem. 1990, 55, 4144.
- 36. a) Hatanaka M., Himeda Y., Imashiro R., Tanaka Y., Ueda I.: J. Org. Chem. 1994, 59, 111;
 b) Corey E. J., Ghosh A. K.: Tetrahedron Lett. 1987, 28, 175.
- a) McIntosh J. M., Cassidy K. C.: *Tetrahedron: Asymmetry* **1991**, *10*, 1053; b) Poss A J., Belter R. K.: *J. Org. Chem.* **1987**, *52*, 4810; c) Apparu M., Barrelle M.: *Bull. Soc. Chim. Fr.* **1984**, 156; d) Crkauskas J. P., Cohen T.: *J. Org. Chem.* **1992**, *57*, 6.
- 38. Helwig R., Hanack M.: Justus Liebigs Ann. Chem. 1977, 614, 4.
- 39. Liu M. T. H.: Acc. Chem. Res. 1994, 27, 287.
- a) McCarthy N., McKervey M. A., Ye T., McCann M., Murphy E., Doyle M. P.: Tetrahedron Lett. 1992, 33, 5083; b) Kennedy M., McKervey M. A.: J. Chem. Soc., Chem. Commun. 1988, 1028; c) Kennedy M., McKervey M. A., Maguire A. R., Roos G. H. P.: J. Chem. Soc., Chem. Commun. 1990, 361.
- 41. Taber D. F., Hennessy M. J., Louey J. P.: J. Org. Chem. 1992, 57, 436.
- 42. Weinstein G. N., O'Connar M. J., Holm R. H.: Inorg. Chem. 1970, 9, 2104.
- a) Fernández Mateos A., Pasual Coca G., Pérez Alonso J. J., González R. R., Simmonds M. S. J., Blancy W. M.: *Tetrahedron* **1998**, *54*, 14989; b) Fernández Mateos A., Pasual Coca G., Pérez Alonso J. J., Rubio González R., Tapia Hernández C.: *Synlett* **1996**, 1134; c) Cecherelli P., Curini M., Marcotullio M. C., Rosati O.: *Tetrahedron* **1991**, *47*, 7403.
- 44. Doyle M. P., Trudell M. L.: J. Org. Chem. 1984, 49, 1196.
- 45. Smith A. B., Toder B. H., Branca S. J., Dieter R. K.: J. Am. Chem. Soc. 1981, 103, 1996.
- 46. Huckin S. N., Weiler L.: Can. J. Chem. 1974, 52, 2157.
- 47. Taber D. F., Ruckle R. E.: J. Am. Chem. Soc. 1986, 108, 7686.
- 48. Padwa A., Kulkarni Y. S., Zhang Z.: J. Org. Chem. 1990, 55, 4144.
- 49. Doyle M. P., Westrum L. J., Wolthuis W. N. E., See M. M., Boone W. P., Bagheri V., Pearson M. M.: *J. Am. Chem. Soc.* **1993**, *115*, 958.
- Doyle M. P., Winchester W. R., Hoorn J. A. A., Lynch V., Simonsen S. H., Ghosh R. J.: J. Am. Chem. Soc. 1993, 115, 9968.
- 51. Wang J., Chen B., Bao J.: J. Org. Chem. 1998, 63, 1853.
- 52. Pirrung M. C., Morehead A. T.: J. Am. Chem. Soc. 1994, 116, 8991.
- 53. Eliel E. L., Wilen S. H.: Sterochemistry of Organic Compounds, p. 615. Wiley, New York 1994.